

Clock Manager: Revolutionizing Industrial Clock Synchronization with Real-Time Monitoring

Presenter: Voon, Weifeng (weifeng.voon@intel.com) Intel Corporation, Penang, Malaysia

intel

Authors:Lai, Jun Ann (peter.jun.ann.lai@intel.com)Song, Yoong Siang (yoong.siang.song@intel.com)Ahmad Tarmizi, Noor Azura (noor.azura.ahmad.tarmizi@intel.com)•Voon, Weifeng (weifeng.voon@intel.com)

Introduction

□ Software Architecture

Functionality and Operational Flow

Test Results

Conclusion and Future Work

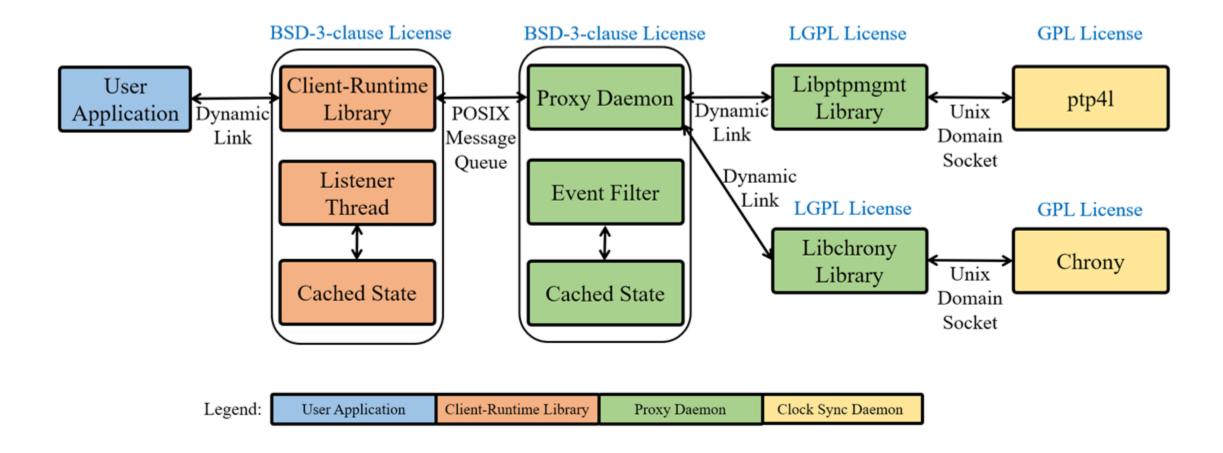
Introduction

Time-Sensitive Networking (TSN):	• Revolutionizes industrial automation, automotive systems, and real-time applications by ensuring deterministic and reliable communication.	
Precision Time Protocol (PTP):	• Key to achieving high-precision time synchronization in TSN networks, surpassing Network Time Protocol (NTP) and GPS in accuracy.	
Challenges in Time Sync:	• Network load variations, hardware imperfections, and environmental factors can cause synchronization errors, leading to data loss, increased latency, and system failures.	
Out-of-Sync Impact:	• Out-of-sync devices can disrupt operations in industrial automation and automotive networks, posing safety risks.	
SW Licensing Issues:	• Proprietary applications face challenges in accessing synchronization status due to non- permissive licenses of time synchronization daemons.	
Clock Manager Solution:	• Introduces a time monitoring solution for real-time status updates from synchronization daemons, enhancing functionality, security, and safety without exposing proprietary code.	

Clock Manager

Overview:

- Open-source C++ tool for monitoring clock synchronization in industrial settings.
- Provides real-time synchronization status to subscribed user applications.


Architecture Components:

- Proxy Daemon:
 - Interfaces with ptp4l and Chrony to obtain real-time clock sync status.
 - Uses libptpmgmt for ptp41 and libchrony for Chrony via Unix Domain Sockets (UDS).
 - Filters and extracts synchronization data, passing it to the client-runtime library via message queue IPC.
- Client-Runtime Library:
 - Offers an API for user applications to connect and receive synchronization events.
 - Stores real-time status and detects changes, triggering event notifications.

Benefits:

- Reduce complexity of handling clock sync status in a single proxy and free the TSN applications from that complexity.
- Proprietary-friendly solution for seamless integration.

High-Level Architectural Overview

Functionality and Operational Flow

Main Function:

- Interfaces with clock sync daemons to provide real-time telemetry data for user applications.
- Supports detection of synchronization errors.

Operational Flow:

- Execute ptp41 and Chrony, then run the proxy daemon.
- User applications connect to the proxy daemon via the CONNECT API, receiving a session ID.
- Subscribe to events using the SUBSCRIBE API, specifying interest in event types.
- Monitor data changes with the WAIT API, which blocks until event changes occur or a timeout elapses.
- Immediate notifications for out-of-sync events enable swift reactions to prevent machine damage.

Functionality and Operational Flow

ptp4l Supported Events:

- **offset_in_range:** Indicates if the offset between Grandmaster (GM) and PHC is within limits; provides latest clock offset.
- **synced_to_primary_clock:** Indicates GM identification and synchronization status.
- **as_capable:** Checks if the network link partner supports IEEE 802.1AS timing requirements.
- gm_Changed: Indicates change in GM candidate with UUID information.

Chrony Supported Events:

- **clock_offset:** Indicates if the offset between reference and system clock is within limits; provides latest clock offset.
- **clock_reference_id:** Provides ID of the reference clock source.
- polling_interval: Indicates Chrony's synchronization period in nanoseconds.

Result: Overview of Data Obtained

Provides a comprehensive view of synchronization status and event timing.

Enhances user applications' ability to make informed decisions based on the most current data. Data Obtained from Clock Manager

[clkmgr] Connected. Session ID : 0
[clkmgr] set subscribe event : 0xf
[clkmgr] set composite event : 0x7
GM Offset upper limit: 100 ns
GM Offset lower limit: -100 ns
Chrony Offset upper limit: 100 ns
Chrony Offset lower limit: -100 ns

[clkmgr][1315.907] Obtained data from Subscription Event:

L		
Event	Event Status	ļ
offset_in_range synced_to_primary_clock as_capable gm_Changed	1 1 1 1	
GM UUID clock_offset notification_timestamp +	222211.fffe.011122 2 1925965364441672526	ns ns +
<pre>+</pre>	1	+
chrony clock_offset chrony clock_reference_id chrony polling interval	0 50484330 500000	ns us

Result: GM Event Notification

Clock Synchronization Process:

• gm_Changed Event:

- Clock Manager notifies the sample application and provides the UUID of the new GM.
- Set to TRUE, indicating there is new GM.
- offset_in_range Event:
- When ptp4l starts synchronizing the PHC, the clock offset is initially large [>+-100].
- Set to FALSE, indicating clock offset is out-of-range.
- synced_to_primary_clock Event:
- ptp4l status changes from uncalibrated to time receiver (slave).
- Set to TRUE, indicating successful synchronization with the GM.

Significance:

• Highlights the role of Clock Manager in providing timely updates to applications, ensuring accurate time coordination

Data Obtained from Clock Manager		ptp41 log	
[clkmgr][1329662.491] Obtained data from Notification Event:		ptp4l[1329662.355]: selected best master clock 222211.fffe.011122	
Event	Event Status Event Count	ptp41[1329662.355]: setected best master ctock 222211. He.oIII22 ptp41[1329662.355]: port 1 (enp1s0): LISTENING to UNCALIBRATED SLAVE	
offset_in_range synced_to_primary_clock as_capable gm_Changed	0 0 1 1 1 1 1 0 1 1 1 1	<pre>LAVE ptp4l[1329662.490]: master offset 1087_s2 freq +2704 pa lay 9 ptp4l[1329662.490]: port 1 (enp1s0): UNCALIBRATED to SLAVE on M CLOCK_SELECTED</pre>	
GM UUID 222211.fffe.011122 clock_offset 1087 ns notification_timestamp 1930695793739487850 ns			

Result: Clock Offset Notification

Event Notification:

- offset_in_range Event:
 - Triggered when the clock offset falls within the predefined range [-100, 100].
 - Clock Manager immediately notifies the sample application that subscribed to this event.
 - Transition from out-of-range to in-range.

Significance:

- Demonstrates the Clock Manager's ability to monitor and report changes in synchronization status.
- Ensures applications are informed of stable synchronization, enhancing system reliability and performance.

Data Obtain	ed from Clock Manager	ptp41 log	
[clkmgr][1677.163] Obtained +	data from Notification Event: ++ Event Status Event Count	ath delay 8	113 s2 freq -1092 p
<pre>/ offset_in_range / synced_to_primary_clock / as_capable / gm_Changed</pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ath delay 8	111 s2 freq -1091 p -99 s2 freq -1059 p
GM UUID clock_offset notification_timestamp +	222211.fffe.011122 <u>-99</u> ns 1925965725696221160 ns ++		

Result: Loss of GM Scenario

Test Overview:

- Simulated GM loss by terminating the GM, causing ptp4l to stop receiving periodic announce messages.
- Time synchronization halts on the local platform.
- Local PHC is temporarily assigned as the leader clock (master).

Clock Manager Response:

• Triggers the synced_to_primary_clock event to indicate the loss of GM

Significance:

- Demonstrates the Clock Manager's ability to detect and report changes in network synchronization status.
- Ensures users are informed of critical changes, allowing for appropriate responses to maintain network stability.

Data Obtained from Clock Manager		ptp41 log	
++ Event Event Status Event Count		ptp4l[1330491.522]: master offset -2 s2 freq -602 pa ptp4l[1330491.530]: master offset 0 s2 freq -596 pa ptp4l[1330491.553]: port 1 (enp1s0): SLAVE to LISTENING on ANNO ptp4l[1330491.554]: selected local clock[00a0c9.fffe.000000] as	
offset_in_range synced_to_primary_clock as_capable gm_Changed	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
GM UUID 00a0c9.fffe.000000 clock_offset 0 ns notification_timestamp 1930696622803237820 ns ++			

Result: Clock Jump Scenario

Experiment Overview:

• Simulated a loss of synchronization by advancing the GM clock to the year 2030, creating a significant time jump.

Clock Manager Response:

- Detected a substantial clock offset surge.
- Promptly alerted the user to the loss of synchronization, indicating the offset exceeded predefined limit

Performance Evaluation:

- Achieved a response time of approximately 7 milliseconds.
- Demonstrates the excellent responsiveness of the Clock Manager in detecting and reporting synchronization anomalies.

Data Obtained from Clock Manager	ptp41 log	
++ Event Event Status Event Count	ptp4l[1331333.508]: master offset -1 s2 freq -609 pa ptp4l[1331333.516]: master offset 1 s2 freq -603 pa ptp4l[1331333.523]: master offset 129954110462 s2 freq +6249999 ptp4l[1331333.531]: master offset 129953633056 s2 freq +6249999	
GM UUID 222211.fffe.011122 clock_offset 129954110462 ns notification_timestamp 1924876929958310090 ns ++		

Conclusion and Future Work

Clock Manager:

- Introduced as an innovative solution for monitoring and reporting clock synchronization status in industrial environments.
- Comprises a client-runtime library and a proxy daemon, enabling seamless integration with proprietary applications.
- Utilizes a permissive BSD-3-Clause license to ensure security and compliance with licensing requirements.

Functionality and Benefits:

- Communicates with time synchronization daemons like ptp41 and Chrony for real-time status updates.
- Notifies applications of synchronization events, such as GM status changes and clock offsets.
- Demonstrated rapid response time of approximately 7 milliseconds in detecting synchronization anomalies, outperforming ptp4l's synchronization interval.
- Provides a secure and efficient solution for managing clock synchronization in complex environments.

Future Work:

• Expand capabilities to support multiple PTP domains synchronization.

Thank You